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Abstract

Most ranking algorithms, such as pairwise ranking, are based on the op-
timization of standard loss functions, but the quality measure to test web
page rankers is often different. We present an algorithm which aims at op-
timizing directly one of the popular measures, the Normalized Discounted
Cumulative Gain. It is based on the framework of structured output learn-
ing, where in our case the input corresponds to a set of documents and the
output is a ranking. The algorithm yields improved accuracies on several
public and commercial ranking datasets.

1 Introduction

Web page ranking has traditionally been based on a hand designed ranking function such
as BM25 [12]. However ranking is now considered as a supervised learning problem and
several machine learning algorithms have been applied to it [1, 3, 6].

Traditional approaches in learning to rank optimize uniform ranking measures such as num-
ber of mis-ordered pairs [9]. However, it is often the case that the users may be more
interested in the most relevant items (first page) and ignore other items. Thus it is more
appropriate for a ranker to spend effort and get the topmost items right. This fact is re-
flected in various ranking measures such as the popular Normalized Discounted Cumulative
Gain (NDCG) score [10].

While recent attempts have been made to optimize this measure [2], we present here a
method which directly optimizes the NDCG. This is made possible by viewing ranking as
trying to learn an ordering of the data. For this purpose, we use the framework of learning
with structure output [15], where in our case the output is a ranking, i.e. a permutation of
the documents. An upper-bound on the empirical loss is minimized and the loss is defined
as the difference in NDCG between a given ranking and the optimal one.

We formalize the learning to rank problem as follows. Pairs of (query, document) are
available and for each pair a grade measuring the relevance of the document to that query
has been assigned by a human editor. We thus have a training set {(xqi, gqi)}, where
q = 1, . . . n indexes the queries on the training set, i = 1, . . . ,mq indexes the documents
with each query, and xqi is a vector describing the i-th (query, document) pair corresponding
to the query q. gqi is the categorical grade assigned to that pair. For instance, grades with
5 levels of relevance are typically encoded as integers from 0 for bad to 4 for perfect.

We use the framework of maximum margin for structured output learning [15] to learn
a function that takes as as input a set of documents associated to a given query, xq :=
(xq1 . . .xqmq

), and outputs a ranking yq (i.e. a permutation of {1, . . . ,mq}) with yqi = r
meaning that the i-th document has rank r.
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Even though it is possible to optimize other ranking measures, we focus in this paper on
the NDCG which is defined for query q as

NDCGk(y, q) :=
1
Nq

k∑
i=1

D(yi)ϕ(gqi), (1)

where D is the discount function D(r) = 1
log2(1+r) , ϕ is an increasing function often chosen

to be ϕ(g) = 2g−1 and Nq is a normalization constant such that the optimal ranking based
on the values of gqi has score 1. k is called a truncation or threshold level. Intuitively the
NDCG is a ranking evaluation criterion that puts strong emphasis at the topmost items,
and between these items, there is a small decaying factor.

The paper is organized as follows. Section 2 shows how structured output learning can be
applied to ranking. The details of the optimization are given in section 3 and in particular
how the combinatorial optimization problem turns out to be a linear assignment problem
which can be solved efficiently. Section 4 discusses an extension of the algorithm where the
convex upper bound on the loss is tightened to a non-convex one. Experimental results are
presented in section 5 before finishing with some possible extensions including the non-linear
case.

2 Ranking as structured output

The first ingredient of structured output learning is the design of a joint feature map
Ψ(xq, yq) from a query and a ranking to Rd. We will see shortly how to define this function.
For a given weight vector w, the predicted ranking associated to a test query xq is [15]

arg max
y

w>Ψ(xq, y). (2)

We now propose the following choice for Ψ:

Ψ(xq, yq) =
∑
i

xqiA(yqi), (3)

where A : N→ R is a user defined non-increasing function. The reason for choosing such a
function Ψ is that one can rewrite (2) as

arg max
y

∑
i

A(yi) w>xqi. (4)

Finding the arg max in (4) over all possible rankings y is straightforward: it is given by
the ranking (in decreasing order) of the “scores” w>xqi. For this reason the linear function
x 7→ w>x can be interpreted as a relevance function: if a (query,document) x has a large
value for w>x, it means that this document is relevant for this query. So it turns out that
at test time our algorithm is not different from any other standard ranking algorithm: it
simply ranks the documents according to the relevance function induced by w. Note that
we only consider linear functions in this paper, but we will discuss non-linear extension at
the end.

When optimizing the NDCGk, only the first k elements of the ranking matter. So we
decide to consider only functions A such that A(r) = 0 for r > k. Typically, A should
be optimized in the model selection part, but in the rest of this paper, we simply take
A(r) = max(k + 1 − r, 0). Also we ignore the rest of ranking after position k and consider
as equivalent two rankings which are identical on the first k positions.

For a given query xq in the training set and the grades of the corresponding pages, we
associate an output yq which is the perfect ranking for that query. It is often the case that
this yq is not unique and we simply take of one of them at random. The training set has
thus been converted to a set {(xq, yq)} of queries and ranking and the original grades gqi
will only be used indirectly in the loss function (1). Given this training set, we would like
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to find a vector w such that the rule (2) predicts the correct rankings on the training set.
This can be written as:

∀q,∀y 6= yq,w>Ψ(xq, yq)−w>Ψ(xq, y) > 0.

As for SVMs, we introduce a margin and slack variables when the training data cannot be
learned exactly to arrive at the following optimization problem [15, 13],

min
w,ξq

λ

2
w>w +

∑
q

ξq (5)

under constraints:

∀q,∀y 6= yq,w>Ψ(xq, yq)−w>Ψ(xq, y) ≥ ∆q(y)− ξq, (6)

where ∆q(y) is the loss incurred when predicting y instead of the correct output yq. The
intuitive reason for this is that we want to penalize more heavily the very bad rankings. In
our case, ∆q(y) is the difference between the NDCG with the perfect ranking yq and the
NDCG obtained with the ranking y, i.e. ∆q(y) = 1−NDCGk(y, q) (see definition (1)).

It is also interesting to note that ξq is an upper bound on the loss incurred on that query
[15]. Indeed let us take a query q for which there is a prediction error and let ŷq :=
arg maxy w>Ψ(xq, y) be the predicted ranking. Equation (6) applied to y = ŷq gives

ξq ≥ ∆q(ŷq) + w>Ψ(xq, ŷq)−w>Ψ(xq, yq)︸ ︷︷ ︸
≥0

.

So ξq ≥ ∆q(ŷq) and minimizing
∑
ξq can be seen as maximizing a lower bound on the

NDCG.

3 Optimization

The optimization of (5) is not straightforward because there is an exponential number of
constraints (6). We will explore different possibilities for solving this optimization problem.
But before, let us concentrate on a step which is common for all algorithms.

3.1 Assignment problem

From (6), the optimal ξq is given by:

ξq = max
y 6=yq

∆q(y)−w>Ψ(xq, yq) + w>Ψ(xq, y). (7)

All the optimization algorithms descried below rely on being able to compute the arg max
in (7).

Since ∆q(y) = 1 − NDCGk(y, q), taking into account (1) and (3), we get the following
problem after discarding the terms independent of y in (7):

arg max
y

k∑
i=1

A(yi)w>xqi −
k∑
i=1

ϕ(gqi)D(yi). (8)

Problem (8) is a linear assignment which can be solved efficiently using for instance the
Kuhn-Munkres algorithm [11]. Also we are only searching for the first k assignments and
the algorithm is even faster for small k.

Let us now go into the details of the different algorithms.

3.2 Cutting plane

As in [15], one can use a cutting plane method which boils down to iterating between finding
the arg max in (8) and solving the Quadratic Program (QP) (5); see algorithm 1.
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Algorithm 1 Cutting plane method
1: w← 0, ξq ← 0, Sq ← ∅, i = 1, . . . , nq.
2: repeat
3: for q = 1 . . . nq do
4: ỹ ← arg max of (8)
5: if (6) is violated with y = ỹ then
6: Sq ← Sq ∪ {ỹ}.
7: Optimize (5) under subset of constraints (6) ∀q, ∀y ∈ Sq.
8: end if
9: end for

10: until No Sq has changed.

There are some possible variations around this algorithm. The first one is that the QP does
not necessarily need to be resolved after a new constraint is added (step 7 of algorithm 1).
Instead, it could be solved after collecting the constraints corresponding to all the queries
(i.e. at the end of the for loop). Between these two extreme cases, an intermediate solution
is to solve the QP after some fixed number of new constraints have been added. It is also
possible to solve the QP only partially, especially in the dual.

We now give the dual formulation for solving (5). For i = 1, . . . ,
∑
q |Sq|, we can write the

set of constraints as:
∀q,∀i ∈ Uq, w>vi ≥ bi − ξq, (9)

where vi is of the form Ψ(xq, ỹ) − Ψ(xq, yq) and Uq is the set of indices corresponding to
query q. Note that with these definitions, |Uq| = |Sq|.

Introducing the Gram matrix K, with Kij = v>i vj , we obtain the following optimization
problem:

max
α

b>α− 1
2
α>Kα (10)

under constraints
α ≥ 0 and ∀q,

∑
i∈Uq

αi ≤ C. (11)

It turns out that this optimization problem is the computational bottleneck and the assign-
ment problem (8) is comparatively very fast. There are several ”tricks” to have an efficient
optimization:

1. Use of ”hot-start”: the α from the previous iteration is the starting point for the
next iteration.

2. After solving the QP, it might be a good idea to get rid off the inactive constraints
(i.e. the ones for which αi = 0). This avoids dragging inactive constraints during
the entire optimization. A discarded constraint will be ”reactivated” if it is picked
up by (8). In situation where the cost of (8) dominates the cost of solving (10), this
might not be a good idea.

3. In the same line, (10) does not need to be solved exactly. We use an active set
method where where once a variable αi becomes inactive, it is never checked again
for inclusion. It will however be checked for inclusion in the outer loop through (8).

4. When a new constraint is added, one can simply optimize the single αi corresponding
to that constraint. The overall optimization on the entire vector α is then only done
in the outer loop.

3.3 Unconstrained optimization

We now look at methods which optimize the unconstrained formulation of the problem
obtained by combining equations (5) and (7):

min
w

λ

2
w>w +

∑
q

max
y 6=yq

∆q(y)−w>Ψ(xq, yq) + w>Ψ(xq, y). (12)
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Perfect

w>Ψ(x, y)

Bad

w>Ψ(x, ỹ)

Good

w>Ψ(x, ŷ)

Figure 1: Let (x, y) be a training example. Imagine a situation where there is no w learning
the data well, i.e. such that w>Ψ(x, y) is large, but there is a w for which the prediction
ŷ on x is good (but maybe not perfect). In that case, we would like to pay a small loss for
that training example. However, in the standard formulation of [15], the loss might be very
large if there is a “bad” prediction ỹ whose output is larger than the perfect one y.

The function in equation (12) is nondifferentiable. We now describe two commons methods
for nonsmooth optimization; see [5, chapter 14] for more details.

3.3.1 Steepest subgradient minimization

This is the analogous of steepest descent except that at a non-differentiable point a subgra-
dient is used. A non-differentiable point is such that there is a tie in of the max of (12). A
subgradient is obtained by breaking it at random. The next point is found by a standard
line search with backtracking. Instead of steepest descent, a conjugate gradient technique
can also be used [16].

3.3.2 Bundle minimization

This is an iterative method which works as follows [14]. Let wk be the current value of w at
each iteration k. Consider the rhs of (12) and compute its value fk as well as a subgradient
gk. Because of convexity, we have that

λ

2
w>w + max

k

(
(w −wk)>gk + fk

)
(13)

is a lower bound on (12). Equation is minimized using a similar dual formulation as in
section 3.2 and the new minimum is wk+1.

4 Tighter upper bound

On some datasets, we found that the optimal solution of (12) is simply w = 0. The problem
is related to underfitting; see figure 1 for an intuitive explanation.

One way to fix this problem is the following. Instead of trying to enforce that the target
output y is larger than the other outputs, we will try to enforce it for another target ŷ,
which is not far from y. More precisely, we replace the original loss,

max
ỹ

∆(ỹ)−w>Ψ(x, y) + w>Ψ(x, ỹ)

by
min
ŷ

max
ỹ

∆(ỹ)−w>Ψ(x, ŷ) + w>Ψ(x, ỹ)

= max
ỹ

(∆(ỹ) + w>Ψ(x, ỹ))−max
ŷ

w>Ψ(x, ŷ). (14)

In the scenario pictured in figure 1, that would lead to a much smaller loss. The maximum
over ŷ is simply given by the prediction rule (2) at the current w. Several comments about
this new loss:

1. It is smaller than the original loss. This can be seen by taking ŷ = y.
2. It still an upper bound on the loss: take ỹ = ŷ.
3. It is non-convex.

In summary, we have a tighter upper bound on the loss, but the convexity is lost. Because
of the non-convexity, we simply minimized this loss by gradient descent as in section 3.3.1.
Another possibility would have been to use the technique described in [8]
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Figure 2: Results on the web search 1 dataset (left), web search 2 (center) and Ohsumed
(right).

5 Experiments

We compare our proposed algorithm on three different datasets: the Ohsumed dataset, part
of the Letor package1 and two datasets from different web search engines. The reason for
choosing Ohsumed over Trec (the other dataset part of Letor) is because Trec has less queries
and has only 2 relevance levels and is thus less interesting from a ranking perspective.

In both cases, we compare the NDCG at different truncation levels with some baseline
algorithms. Note that we only consider linear algorithms.

5.1 Web search 1

In this first experiment, we present results on a ranking dataset coming from a commercial
search engine. It consists of about 1500 queries and 50k (query,url) pairs. For each of these
pairs, a relevance grade has been assigned out of 5 possible relevance levels. Each (query,url)
pair is made of several hundred features.

A fifth of the data is held out as a test set and a fifth as a validation set. The regularization
parameter λ is tuned on this validation set. For each k from 1 to 10, the NDCGk is
independently optimized. The function A is chosen to be A(r) = max(k+ 1− r, 0). We also
tried to take A to be the discount function D but the results were not as good.

Results are shown in figure 2. Even though there is no clear state-of-the-art ranking al-
gorithm, we have identified based on the literature and our own experience two popular
methods in web search ranking. They are the baseline methods that we are including for
comparison. The first one simply consists in performing regression to fit the output rele-
vance levels 0, 1, 2, 3, 4. The second one, RankSVM [9], is based on pairwise classification:
for a given query, if a page x1 is more (resp less) relevant than x2, then x1 − x2 is added
to the training set with label +1 (resp -1). Then a standard linear SVM classifier is trained
on this new training set.

The gain in performance is about 2%, which is considered very satisfactory in the web search
ranking community. For each query, we add the NDCGs from k = 1 to 10 and perform a
Wilcoxon signed-rank test. The p-value corresponding to the difference between our method
and regression (resp RankSVM) is 3% (resp 7%).

From a computational point of view, the training is relatively fast. For the three different
methods described in sections 3.2, 3.3.1 and 3.3.2, the training time is of the order of 15
minutes.

5.2 Web search 2

This second experiment is similar to the first one except that the data comes from another
search engine. It has 1000 queries for training 1000 queries for test and 1000 queries for

1Available at http://research.microsoft.com/users/tyliu/LETOR/
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validation. The number of documents per query is typically of the order of 50. It also has
5 levels of relevance. For that experiment, a different function A is used, A(r) = 1√

r
.

The results are shown in figure 2. Our algorithm clearly outperforms the other ones and
the improvement is statistically significant (p-value < 1%).

5.3 Ohsumed dataset

The Ohsumed dataset has 106 queries and we used the same 5 splits training / validation /
test as provided in the Letor distribution. Each (query,document) pair has 25 features and
3 possible relevance scores.

On this dataset, the algorithm presented in section 3 (i.e. the minimization of (12)) returns
the solution w = 0 even for very small values of λ. We believe that it is because of the
underfitting problem mentioned in section 4. To solve this problem, we instead perform
a gradient descent optimization on the tighter non-convex upper bound (14). Since this
optimization problem is non-convex, the starting point is important. We set it to w0, where
w0 is found by regression on the grades. Also the regularizer is changed from ||w||2 to
||w −w0||2.

Finally we observed that optimizing the NDCGk, as done above, gave unstable results in
particular during the model selection phase. This is probably because the dataset if very
small. Instead we optimize the NDCG10 which gives a more stable indicator of the quality
of a solution.

Figure 2 shows the performance of our method compared to the two baseline algorithms,
RankBoost and RankSVM. These results are included in the Letor distribution. Even
though there is around 2% improvement in the NDCG, this difference is not statistically
significant. This is again probably due to the fact that there are only 106 queries in this
dataset.

6 Extensions

Non-linear functions There are several ways of achieving a non-linear extension:

”Kernel trick” Simply replace xqi in (3) by Φ(xqi) where Φ a mapping to high dimensional
feature space such K(x,x′) = Φ(x)>Φ(x′). The evaluation of one “kernel” entry in
(10) involves a linear combination of kernel evaluations.

Non-linear architecture Starting from the unconstrained formulation (12), one can re-
place the dot products w>xqi by fw(xqi) where fw could for instance be a neural
network with weights w. For a gradient optimization, we simply need that fw(xqi)
is a differentiable with respect to w. See [1] for ranking with neural networks.

Functional gradient boosting When the class of functions cannot be optimized by gra-
dient descent (that is the case of decision trees for instance), one can still apply
the gradient boosting framework of [7]. Indeed in this framework we only need to
compute the gradient of the loss with respect to the function values. This is possible
in (12) if we ignore the regularization term. The regularization would have to be
imposed in the boosting algorithm, for instance by limiting the number of iterations
and/or the number of leaves in a decision tree.

Rescaled slacks In [15], it was also proposed to rescale the slacks instead of rescaling
the margin as in (6). This means changing the rhs of (6) to 1− ξq

∆q(y) . The benefit of this
formulation is that it does not waste ressources in trying to enforce a very large margin for
bad rankings. The problem is that the arg max problem (8) becomes a quadratic assignment
problem:

arg max
y

(
C1 −

∑
gqiD(yi)

)(
C2 +

∑
A(yi)w>xqi

)
,

where C1 and C2 are two constants independent of y. Since this problem is NP-Hard,
efficient heuristics have to be used for solving it.
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Model selection Instead of fixing the function A, it is possible to try to learn it. In the
optimization method of section 3.2, A only appears in the kernel matrix (10). So a natural
way to learn A is to consider it as a kernel parameter and apply for instance the methods
described in [4].

7 Conclusion

By viewing the ranking problem as a structured output learning problem, we have been
able to propose an algorithm that directly optimizes a complex quality measure such as the
NCDG. Since most other rankings algorithm optimize simpler loss functions, our proposed
algorithm could improve the ranking quality on several datasets.

We also proposed a modification of the original structured output learning algorithm [15]
that leads to a tighter upper bound on the training loss. We believe that this novelty might
not only be useful in ranking, but also in a variety of structured output learning problems,
especially the ones where underfitting could be an issue.
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